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ABSTRACT 
In this paper, we describe EASy-Producer, a prototypical tool for 
complex and large-scale Software Product Line (SPL) 
development. The tool enables SPL engineers to reduce 
complexity by combining derivation and composition techniques 
to manage one large SPL as a combination of individual, but 
interrelated SPLs. 

1. THE TOOL ENVIRONMENT 
EASy-Producer (EASy stands for Engineering Adaptive Systems) 
utilizes the main principles of multi-level staged configuration [1], 
multi-dimensional variability modeling [4] and multiple software 
product lines [2, 3]. These approaches are state of the art 
approaches to address the challenge of handling complex and 
large-scale SPLs. 
The current prototype is a new implementation of the earlier 
EASy-Producer prototype [5]. It uses decision modeling as 
described in [6] as basis for variability modeling. Like its 
predecessor it is embedded within the Eclipse environment. 
In EASy-Producer each SPL is managed in its own Product Line 
Project (PLP). The tool does not fundamentally differentiate 
between new, partially or fully configured SPL and an instantiated 
product. A PLP can be part of a derivation chain that results from 
one of the three different scenarios depicted in Figure 1: 
1. A generic PLP can be (partially) instantiated to form a more 

specific PLP. In Figure 1 a specialized PLP for picture 
handling PL_Picture is derived from a generic one 
(PL_Graphics) that supports general graphic processing.  

2. Products can be directly derived from a PLP with open 
decisions. An example for this is Pd_1. 

3. Multiple PLPs can be combined as basis for an infrastructure 
or a product. Examples for this are PL_Picture and Pd_3. 

The decisions made within the configuration step of one PLP lead 
to the instantiation of the related artifacts of the PLP within the 
derivation step. In case of PL_Picture mentioned above, this 
could mean that all video processing classes are deleted, whereas 
decisions relevant to picture functionality (e.g., jpg or gif file 
handling) would remain open and associated parts of the artifacts 
would not be instantiated 
Each PLP stores information about its pre- and successors, but it 
is not mandatory to have all associated projects locally available 
to allow collaborative work. However, if the predecessors can be 
accessed, it facilitates updating the infrastructure and the 
variability model. 

2. CONCLUSION AND FUTURE WORK 
EASy-Producer is a prototype combining several state of the art 
techniques like multi-level staged configuration and multiple 
software product lines to meet the needs of large-scale product 
line development. However, there are still open issues such as 
more sophisticated approaches to model interdependencies among 
PLPs. We will further research on a better modularization for 
instantiating and combining assets of aggregated PLPs as well as 
on the modeling and implementation of multiple binding times. 
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Figure 1: Example project structure 
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