
Support for complex product line populations
Sascha El-Sharkawy, Christian Kröher, Klaus Schmid

University of Hildesheim, Institute of Computer Science
Marienburger Platz 22, D-31141 Hildesheim, Germany

{elscha, kroeher, schmid}@sse.uni-hildesheim.de

ABSTRACT
In this paper, we describe EASy-Producer, a prototypical tool for
complex and large-scale Software Product Line (SPL)
development. The tool enables SPL engineers to reduce
complexity by combining derivation and composition techniques
to manage one large SPL as a combination of individual, but
interrelated SPLs.

1. THE TOOL ENVIRONMENT
EASy-Producer (EASy stands for Engineering Adaptive Systems)
utilizes the main principles of multi-level staged configuration [1],
multi-dimensional variability modeling [4] and multiple software
product lines [2, 3]. These approaches are state of the art
approaches to address the challenge of handling complex and
large-scale SPLs.
The current prototype is a new implementation of the earlier
EASy-Producer prototype [5]. It uses decision modeling as
described in [6] as basis for variability modeling. Like its
predecessor it is embedded within the Eclipse environment.
In EASy-Producer each SPL is managed in its own Product Line
Project (PLP). The tool does not fundamentally differentiate
between new, partially or fully configured SPL and an instantiated
product. A PLP can be part of a derivation chain that results from
one of the three different scenarios depicted in Figure 1:
1. A generic PLP can be (partially) instantiated to form a more

specific PLP. In Figure 1 a specialized PLP for picture
handling PL_Picture is derived from a generic one
(PL_Graphics) that supports general graphic processing.

2. Products can be directly derived from a PLP with open
decisions. An example for this is Pd_1.

3. Multiple PLPs can be combined as basis for an infrastructure
or a product. Examples for this are PL_Picture and Pd_3.

The decisions made within the configuration step of one PLP lead
to the instantiation of the related artifacts of the PLP within the
derivation step. In case of PL_Picture mentioned above, this
could mean that all video processing classes are deleted, whereas
decisions relevant to picture functionality (e.g., jpg or gif file
handling) would remain open and associated parts of the artifacts
would not be instantiated
Each PLP stores information about its pre- and successors, but it
is not mandatory to have all associated projects locally available
to allow collaborative work. However, if the predecessors can be
accessed, it facilitates updating the infrastructure and the
variability model.

2. CONCLUSION AND FUTURE WORK
EASy-Producer is a prototype combining several state of the art
techniques like multi-level staged configuration and multiple
software product lines to meet the needs of large-scale product
line development. However, there are still open issues such as
more sophisticated approaches to model interdependencies among
PLPs. We will further research on a better modularization for
instantiating and combining assets of aggregated PLPs as well as
on the modeling and implementation of multiple binding times.

3. ACKNOWLEDGMENTS
This work is partially supported by the INDENICA research
project, funded by the European Commission grant 257483, area
Internet of Services, Software & Virtualisation (ICT-2009.1.2) in
the 7th framework programme.

4. REFERENCES
[1] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration through specialization and multi-level configuration
of feature models. In Software Process: Improvement and
Practice, volume 10, pages 143–169, 2005.
[2] G. Holl, M. Vierhauser, W. Heider, P. Grünbacher, and
R. Rabiser. Product line bundles for tool support in multi product
lines. In 5th International Workshop on Variability Modeling of
Software-Intensive Systems, pages 21–28, 2011.
[3] M. Rosenmüller and N. Siegmund. Automating the
configuration of multi software product lines. In 4th International
Workshop Variability Modelling of Software-intensive Systems,
pages 123–130, 2010.
[4] M. Rosenmüller, N. Siegmund, T. Thüm, and G. Saake.
Multi-dimensional variability modeling. In 5th International
Workshop on Variability Modelling of Software-intensive Systems,
pages 11–20, 2011.
[5] K. Schmid and H. Eichelberger. Model-based implementation
of meta-variability constructs: A case study using aspects. In 2nd
International Workshop Variability Modelling of Software-
intensive Systems, pages 63–71, 2008.
[6] K. Schmid and I. John. A customizable approach to full-life
cycle variability management. Science of Computer
Programming, 53(3), pages 259–284, 2004.

Copyright is held by the author/owner(s).

SPLC’11, August 21–26, 2011, Munich, Germany.
ACM 978-1-4503-0789-5/11/08.

Figure 1: Example project structure

PL_Picture

PL_OS

PL_Video

Pd_1 Pd_3

Pd_2

Pd_4

PL_Graphics

Predecessor

Successor

Derivation

Instantiated Project

Product Line Project

