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Abstract

Systematic exploration of hypotheses is a major part of any empir-

ical research. In software engineering, we often produce unique

tools for experiments and evaluate them independently on di�erent

data sets. In this paper, we present KernelHaven as an experimenta-

tion workbench supporting a signi�cant number of experiments

in the domain of static product line analysis and veri�cation. It

addresses the need for extracting information from a variety of

artifacts in this domain by means of an open plug-in infrastructure.

Available plug-ins encapsulate existing tools, which can now be

combined e�ciently to yield new analyses. As an experimentation

workbench, it provides con�guration-based de�nitions of experi-

ments, their documentation, and technical services, like paralleliza-

tion and caching. Hence, researchers can abstract from technical

details and focus on the algorithmic core of their research problem.

KernelHaven supports di�erent types of analyses, like correct-

ness checks, metrics, etc., in its speci�c domain. The concepts pre-

sented in this paper can also be transferred to support researchers of

other software engineering domains. The infrastructure is available

under Apache 2.0: https://github.com/KernelHaven. The plug-ins

are available under their individual licenses.

Video: https://youtu.be/IbNc-H1NoZU
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1 Introduction

In Software Engineering (SE), the systematic exploration of hy-

potheses often requires the development of tools to analyze early

assumptions and their evolution towards evaluating a �nal ap-

proach. This way of validating research concepts requires time

and e�ort for developing appropriate tooling [10]. In particular,

these tools are typically only designed for very speci�c experiments,

which requires the design and implementation of its unique data
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Figure 1. KernelHaven Architecture

extraction mechanism, data model and analysis as well as standard

capabilities like caching, parallelization or logging. Further, each

experiment requires a speci�c setup of process steps or combination

of tools to produce the desired results. Reproducing these results

in turn requires a precise documentation of the experiment and its

data, which is not always the case.

In this paper, we present KernelHaven as an experimentation

workbench addressing these challenges in the domain of static Soft-

ware Product Line (SPL) analysis and veri�cation. The focus in this

domain is on analyzing and verifying variability information [15],

which is typically encoded in di�erent types of artifacts to enable

their customization and to derive product variants from the SPL

[17]. Similar to the workbench for checking consistency among

di�erent software architecture representations [8], KernelHaven

addresses the resulting need for information extraction from dif-

ferent artifacts in the SPL domain for variability-based analyses of

C-preprocessor SPLs, like Linux. Its open plug-in infrastructure

enables a rapid setup for a signi�cant number of experiments, like

evaluating approaches for correctness checks, metrics, etc. As an

experimentation workbench supports the scienti�c process at large,

e.g., rapid variation of experiments, reuse of components in new

experiments, etc., plug-ins realize, for example, individual extrac-

tion mechanisms or analysis algorithms, which can be combined

e�ciently for a speci�c experiment. Further, the infrastructure

o�ers con�guration-based de�nitions of experiments, their docu-

mentation, and technical services, like parallelization and caching.

Hence, researchers can abstract from technical details and focus on

the algorithmic core of their research problem.

Despite the focus of the tool, the general concepts are much

broader. Thus, not only SPL researchers bene�t from an o�-the-

shelf experimentation ecosystem but also researchers of other SE

domains, who may adapt these concepts for their speci�c purposes.

2 KernelHaven Concepts

Variability-based analyses of C-preprocessor SPLs, like Linux, typi-

cally consider variability information in code, build, and variability
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Figure 2. KernelHaven Instance

model artifacts. A variability model de�nes the products of a SPL

by individual features and constraints among them [17]. In code

artifacts, #ifdef-statements reference these features to make the

presence of code blocks dependent on the selection of features of

the variability model [7, 14]. Similar references in build artifacts

control the execution of build rules and the presence of entire �les

in a product variant [11, 12]. Hence, KernelHaven supplies an anal-

ysis with information from these types of artifacts as illustrated in

Figure 1.

KernelHaven is implemented in Java and consists of three ex-

traction pipelines as well as a pipeline con�gurator. The upper

pipeline in Figure 1 extracts information from code �les using a

code extractor. The result of this extraction is an element tree for

each of the available code �les (we will provide more details on

the data models in Section 3.1). The middle pipeline extracts and

provides information from build �les as a map of �les and their

presence conditions (PC in Figure 1). These conditions, also called

presence implications [4] or make space constraints [12], de�ne

constraints, which must be satis�ed to compile and link a speci�c

(set of) �le(s). The lower pipeline in Figure 1 processes variability

model �les to propositional formulas, which represent the features

and constraints de�ning the planned product variants of the SPL.

The information provided by one or multiple pipelines is input

to an analysis. Analyses may call other analyses (cf. Section 3.2)

and consume their results, e.g., for comparison or as input. The

infrastructure also provides utility functions to support speci�c

parts of an analysis. For example, it provides conversions from

propositional formulas to their conjunctive normal form (CNF) or

a solver (SAT4J [13]), which are typically required in SPL analysis.

The con�guration �le in the lower left part of Figure 1 con-

sists of a set of parameters de�ning the setup of the workbench.

The pipeline con�gurator reads these parameters to con�gure the

extractors and the analysis before their execution. This includes

general parameters like input and output locations, the location

of available extractors and analyses, and the de�nition of which

extractors and analysis to use. The infrastructure further o�ers

con�guration parameters for the features presented in Section 3.

The parameter values in a con�guration �le de�ne a speci�c

instance of KernelHaven as illustrated in Figure 2. This example is

designed to perform a feature e�ect analysis [11], which identi�es

under which condition the selection of a feature has an impact

on (parts of) the variable code and, hence, a�ects the behavior of

the resulting product. As this e�ect is de�ned by the presence

conditions in the build and code �les, the instance in Figure 2 uses

the Undertaker [16] code extractor and the KbuildMiner [1] build

extractor for the analysis. While the former extracts #ifdef-blocks

with their presence conditions, the latter provides such conditions

from the build system. Information of the variability model is not

Figure 3. Excerpt of the Code Data Model in KernelHaven

needed for this analysis, which results in deleting the respective

con�guration parameter de�ning the variability model extractor

and the absence of the entire model pipeline in Figure 2.

3 KernelHaven Features

In this section, we present the core features of KernelHaven, which

support researchers in rapid prototyping, conducting similar ex-

periments, as well as reproducing their results. Sections 3.1 and 3.2

discuss features to support �exibly a wide range of experiments.

We then present features to reduce the implementation e�ort for

experiment designers in Sections 3.3 to 3.5.

3.1 Common Data Representation

The three extraction pipelines of KernelHaven provide their indi-

vidual data models, which decouple the data extraction from the

analysis and facilitate exchange of alternative extractor realizations.

The models contain the relevant information, which is required for

conducting the various experiments, independently of the infor-

mation provided by the diverse extractors. This allows the �exible

exchange of alternative extractors, which are based on existing

research prototypes designed for di�erent purposes and vary in

terms of their advantages.

Figure 3 shows two code extractors and the relevant excerpt of

the data model. On the right side of the picture is the Undertaker

code extractor, which extracts conditions from #ifdef-blocks only.

The left side of the picture shows the TypeChef [9] extractor, which

provides an abstract syntax tree (AST) with variability information.

Both data structures inherit from CodeElement, which stores the

common information. Most analysis implementations use this class

as it provides su�cient information. This allows to exchange the

fast Undertaker-based extractor with the macro-aware parser of

TypeChef, without any modi�cations of the consuming analysis.

However, analyses may operate directly on one of the sub-classes, if

they require additional information. For instance, code metrics [6]

may operate on SyntaxElements and, hence, require an extractor

generating an AST with variability information, like TypeChef.

The extractors and data models for the other two extraction

pipelines are realized in a similar way. The data model for the build

information, for example, stores a presence condition for each code

�le (cf. Section 2). For the analysis of Linux, we realized an extractor

which uses KbuildMiner [1] to extract this information from the

build �les. In an industrial case study, alternative implementations

are handled by a con�guration management tool rather than by

MAKE scripts. In this case, we had to develop a new build model

extractor to collect this information. However, the existing data

model did not require any modi�cations. Also other extractors and

analysis plug-ins could be reused without any modi�cations on

Linux as well on the industrial case study.
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1 @Override

2 protected AnalysisComponent createPipeline () {

3 return new FeatureEffectFinder(config ,

4 new PcFinder(config , getCmComponent (),

5 getBmComponent ())

6 );

7 }

1 analysis.class = ConfiguredPipelineAnalysis

2 analysis.pipeline =

3 FeatureEffectFinder(

4 PcFinder(cmComponent (), bmComponent ())

5 )

6 analysis.output.intermediate_results = PcFinder

7 analysis.output_writer.class = ExcelBook

Figure 4. Excerpts of a Programmed and a Con�gured Analysis Pipeline.

3.2 Extension for New Experiments

KernelHaven can be con�gured by a con�guration �le to be able

to �t to the speci�c needs of the desired experiment (cf. Section 2).

In addition, KernelHaven o�ers extension points to allow the inte-

gration of extractor and analysis plug-ins, if simple con�guration

is not su�cient to integrate a new concept. These extractors and

analyses use the common data representation (cf. Section 3.1) and

may even reuse existing plug-ins as part of their process. Further,

extractors may extend the elements of the data models to provide

custom information. As the implementation of a new extractor or

analysis is only a matter of de�ning the desired parent class, e.g., the

abstract code extractor class for a new code extractor, this section

focuses on the (re-)use of the data models and existing plug-ins.

The data models of each pipeline represent interfaces between

extractors and analyses. Hence, each new extractor needs to return

(some of the) respective model elements, which in turn are pro-

vided to the requesting analysis. For example, the Undertaker code

extractor creates and returns CodeBlock elements as illustrated in

Figure 3. However, for some experiments this element may not

be su�cient to extract all relevant data from code �les, while the

SyntaxElement on the other hand is too expressive. In this situa-

tion, the new extractor can introduce its own element by de�ning

a new class derived from CodeBlock of the common data model.

Due to inheritance, the infrastructure transparently provides this

new code block to an analysis. This extension mechanism can in

principle be applied by each type of extractor.

Analysis plug-ins may reuse other analyses as part of their im-

plementation. For instance, the feature e�ect analysis described in

Section 2 actually consists of a set of analyses, each with its indi-

vidual purpose. First, we developed an analysis plug-in to discover

all presence conditions (code and build) in a product line. Second,

another analysis takes these conditions as an input to calculate

feature e�ect constraints [11]. In this way, each analysis plug-in

becomes reusable and can be combined to a pipeline of (atomic)

analysis plug-ins.

KernelHaven o�ers two alternatives to realize such analysis

pipelines. Figure 4 shows an example of both alternatives for the

realization of the feature e�ect analysis.

1. The wiring of the analysis plug-ins may be done in code, if

the previous analysis plug-ins need not to be exchangeable. In

this case, researchers need to create a new class which inherits

from PipelineAnalysis and overrides the createPipeline-

method as shown in the left listing. This method speci�es the

wiring of the analysis plug-ins, but also the required extractor

pipelines. As a consequence, the user needs only to specify this

class in the con�guration scripts in order to run all analysis plug-

ins and the required extractors to retrieve the desired output.

2. KernelHaven also o�ers the possibility to con�gure the complete

pipeline in a con�guration �le as shown in the right listing. For

this, the user has to select the ConfiguredPipelineAnalysis

as done in Line 1 and to model the pipeline with an integrated

DSL as done in Lines 2–5. This alternative allows to �exibly

exchange partial analysis steps without writing new code.

In both cases, it is possible to specify for each analysis the re-

quired input. In the example of Figure 4, the detection of presence

conditions requires the output of a build model (bmComponent) and

a code (cmComponent) extractor. The analysis of feature e�ects

requires only the results of the previous analysis, however, both

approaches allow to specify further input sources if required.

3.3 Support for Reproduction

Reproduction of experiments in research and, in particular, in com-

puter science becomes a major problem today [2, 3, 5]. KernelHaven

addresses these problems through the following concepts:

Intermediate Results. KernelHaven o�ers the optional possi-

bility to save intermediate results in human readable form. This

includes the cached information of the extractors (cf. Section 3.5),

intermediate analysis results, and the �nal results of the actual

analysis. This facilitates a manual veri�cation of each processing

step in the sense of a black-box test.

An example of how to obtain such intermediate results is shown

in the right part of Figure 4. KernelHaven stores only the results of

the last processing step by default. In this example, this would only

be the results of the feature e�ect analysis. The optional parameter

in Line 6 allows to specify any number of intermediate analysis

results, which should also be saved. Further, Line 7 speci�es Excel

sheets as output format (ExcelBook). In the example, the results

of the presence conditions will be written to a separate sheet in

the resulting Excel document. Alternatively it would be possible

to save the results as separate CSV-�les or another output format,

which may be de�ned by a plug-in.

Dependency-free Plug-ins. In the previous sections we al-

ready described the integration of external tools by means of the

plug-in architecture of KernelHaven. We designed these plug-ins

to integrate all necessary external tools and dependent libraries as

far as possible to avoid a dependency hell. As a result, KernelHaven

and most of its plug-ins require only Java. However, some of the

plug-ins are compiled for a speci�c operating system only.

For instance, the Undertaker-based extractor requires Linux to

be able to execute the included binary. However, it does not require

the installation of any further libraries, because all required libraries

are linked statically.

Documentation of Experiments. KernelHaven supports auto-

matic archiving of all relevant plug-ins, input, output, and interme-

diate data to reproduce an experiment. In particular, KernelHaven

takes care to bundle itself as well as all available plug-ins and the

used con�guration �le, which speci�es the experimental setup, i.e.,

which plug-ins are used and how the data is passed from the ex-

tractors through the di�erent analysis steps. Further, the archive
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includes the input data and any resulting information, e.g., cached

extraction data, log �les, intermediate, and �nal analysis results.

The resulting archive contains all relevant information for an

external review. Further, it supports reproduction of an entire

experiment on a new machine. This only requires the installation

of Java on an appropriate operating system.

3.4 Parallelization

KernelHaven supports parallel data extraction and analysis on two

di�erent levels: i) each extraction pipeline in Figure 1 runs as an

individual thread and ii) extractors as well as analyses may run con-

currently. This parallelization enables an analysis to immediately

start its evaluation as soon as su�cient data is available. In partic-

ular, an analysis plug-in may start even while a required analysis

plug-in, which serves as input, is not completely �nished.

The main advantage of this feature is that parallelization is han-

dled transparently by the infrastructure. Hence, researchers do not

need to care about it and can focus on the implementation of their

approach. For instance, code extractors are designed for the transla-

tion of a single �le. The infrastructure creates multiple instances of

them to translate several code �les in parallel. This mechanism is

also available for analyses. Further, the infrastructure manages the

entire lifecycle of each thread, such that researchers can focus on

their core algorithms instead of spending e�ort on parallelization.

In some situations, however, parallelization may not be desired

as the respective extractor or analysis requires all information to be

available before being able to produce their results. For example, the

TypeChef code extractor may use the parsed variability model to

exclude irrelevant parts from the variability aware AST. While this

is in general a design decision, individual con�guration parameters

can be used to switch from parallel to non-parallel processing for

each extractor and analysis. In this way, the same extractor or

analysis can be used in both a parallel and a non-parallel setup.

3.5 Data Caching

The core infrastructure of KernelHaven o�ers a mechanism to save

and reuse extracted information from code, build, and variability

model �les. This data caching feature is implicitly available for each

extractor and can be enabled or disabled by two distinct con�gura-

tion options in a con�guration �le: one for writing the extracted

information to the hard disc and one for reading the cached data

instead of executing the extractors. As these two options are avail-

able for each pipeline (extractor), either one or multiple pipelines

may cache and reuse their data. The main bene�t of this feature

is that conducting the same experiment multiple times as well as

conducting similar experiments (same extracted information but

di�erent analysis) takes signi�cantly less time than processing the

inputs again for every experiment.

The model elements created and returned by an extractor de-

�ne the data to be cached. For example, the TypeChef extractor

creates a set of SyntaxElements (cf. Figure 3), which the infrastruc-

ture passes to an analysis. If the con�guration option for caching

the extracted code information is enabled, the infrastructure also

serializes these code model elements to the hard disc. The next

experiment requiring the same information may enable the con�g-

uration option for reading this cached information. In that case, the

infrastructure reads the serialized code model elements from hard

disc instead of executing the code extractor leading to signi�cant

performance improvements.

4 Conclusion

We presented KernelHaven as an experimentation workbench to

support and simplify experiments in the domain of variability-based

static analysis of C-preprocessor Software Product Lines (SPL). This

novel methodology aims at providing a reusable infrastructure

along with some standard capabilities, which researchers can (re-

)use for their experiments. KernelHaven realizes this methodology,

e.g., to evaluate approaches for correctness checks or metrics, for

its speci�c domain. It was already applied in two di�erent setups

to perform the feature e�ect analysis on Linux, which is one of

the largest SPL known in research, as well as on an industrial

SPL of similar size and complexity. Further, the general concepts

presented here may be adopted by researchers in other software

engineering domains. Hence, we expect two types of follow-ups in

the future: the integration of additional analyses as KernelHaven

is more established and the transfer of concepts to other domains

to support experimental research.
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